

SCS Computing Infrastructure

T~

Distributed

= |-WIRE

Parallel Computers — OMNI

Pervasive Computing
Environments

X. Sun, Feb. 2004

Outline

* High Performance Computing
— Scalable numerical kernel solvers
— Performance optimization

 Distributed Computing
— Mobility and mobility of legacy code
— Performance prediction and task scheduling

e Pervasive Computing (not cover)
« Application
e Conclusion

X. Sun, Feb. 2004

Scalable Numerical Algorithms

e Motivation

— Parallel codes have been developed during last
decade

— The performances of many codes suffer in a
scalable computing environment

e Achievement
— Scalable tridiagonal solvers
— Fast and high-order Poisson solvers
— Iterative Helmholtz equation algorithms
— Domain decomposition methods

X. Sun, Feb. 2004

ldeal Speedup —
Periodic System ——
l[deal Speedup — MNon-Periodic System ——
Periodic Systems ——
Mon-Periodic Systems —+—

s

15 210 25 10 15 20
Mumber of Processors Mumber of Processore

PDD, Pipelining, PPD (hybrid)
for NLOM Tridiagonal Systems

PDD, Pipelining, PPD
for NLOM Poisson Egquations

Distributed Computing
(HPCM)

« With the rapid advance of communication, the next
generation computing will be: Mobile Computing

e Current successes of mobile computing are based on
safe-languages such as Java, which is slow and
cannot apply to legacy codes

 The HPCM middleware makes codes written in
traditional languages such as Fortran, C, C++
migratable

X. Sun, Feb. 2004

ow to transfer
ow to transfer

Execution State?
Memory State?

ow to transfer Communication State?

ow to transfer
ow to transfer
oW to support

process state efficiently?
process state automatically?

process migrate from one virtual

organization to another in a Grid environment?

How to support mobility in hybrid Java-native

code environment?
 How to design a coordinated middleware?

X. Sun, Feb. 2004

Mobility of Legacy Code

continue

* We have developed novel methodologies and a
prototype system, HPCIM, to migrate codes
written in traditional languages such as Fortran,

C, C++

—Two level mobility: migrate native
codes under Java virtual machine

—General methods: migrate between
different computing systems and
different virtual organizations.

—Leading technology, strong
mobility

X. Sun, Feb. 2004

process 0
process 1

process

proces 3 |

process 4
proces 5

DR i

Priocess 7

| |
I -. 'llll IJ i
Il\-\ I i jf . | I
B 4 \ [T
I ! N T 1
i | % | [
"

Performance and Scheduling

* New challenge in Grid Computing
— Resources are shared
— Data are shared resources

* New challenge in high performance computing
— Memory hierarchy and data access delay

X. Sun, Feb. 2004 @

The Grid Harvest Service (GHS) System

A long-term application-level performance
prediction and scheduling system for non-
dedicated distributed (Grid) environments

* A new prediction model derived via
probability analysis and simulation

* New scheduling heuristics for resource, QoS,
and data conscious scheduling

e Runtime dynamic scheduling

X. Sun, Feb. 2004

Scheduling with a Given Number of Sub-tasks

List a set of lightly loaded machines ™ ={m;,m, ...m};
List all possible sets of machines, such as |s, = p
For each machine set s, (sk<a2),
Use mean time balancing partition to partition the task
Use the formula to calculate the mean and coefficient of variation
If E(,)L+Coe(T))> E(T,)1+Coe(Ts)) ,then p'=k ;
End For
Assign parallel task to the machine set S, ;

X. Sun, Feb. 2004

QoS Guided Min-Min Heuristics

for all tasks t; in meta-task M, (in an arbitrary order)
for all hosts m, (in a fixed arbitrary order)
CT;=ET;+ d
do until all tasks with high QoS request in M, are mapped
for each task with high QoS in M, find a host in the QoS qualified host
set- that obtains the earliest completion time
find the task t, with the minimum earliest completion time
assign task t, to the host m, that gives it the earliest completion time
delete task t, from M,
update d,
update CT; for all i
end do
do until all tasks with low QoS request in M, are mapped
for each task in M, find the earliest completion time and the
corresponding host
find the task t, with the minimum earliest completion time
assign task t, to the host m, that gives it the earliest completion
time
delete task t, from M,
update d,
update CT,, for all i
end do

X. Sun, Feb. 2004

Data-Conscious Scheduling Heuristics

For a group of tasks T.
Get MCT, based on data replica placement.
For each task in the metatask but not run yet
If subtask t; needs data d,
For all S, in Sites
Compute MCT , based on DDT from host 1 to m.
Get minimum MCT ...
Endfor
If MCT .,;, < MCT,
Copy dataj from host 1 to host r
MCT,= MCT i,
Else
Do not copy

Endfor

X. Sun, Feb. 2004

Measure the prediction error of
the system utilization, PU(K)

Find the best machine or machine set
for task reallocation

Calculate the expectation of T(reassign)
and T(original): E(R) and E(O)

Task Reallocation
Running application until next
monitor period

e

Application-
level Predictor

System-level
Predictor

Resource

Information
Service

Task Manager

Scheduler

Allocator

Task Execution Service

Resources

g =

<
S
<
=
o
2
=
o
c
o
2
L
°
9]
bt
a

o expectation+variation
a expectation-variation

= expectation

remote task execution time
(hours)

o expectation+variation
= expectation

a expectation-variation

prediction(%)

parallel task execution time
(hours)

» expectation+variation
a expectation-variation

- expectation

<
=
<
=
o
2
=
3]
c
o
=
L
=
9]
2
o

4 8 16

parallel task execution
time (hours)

O N8 (10 seconds)
BN (5 mnutes)
OGH

o

=
X
o/
-
o
-
-
]
c
o
1.
-
o
1.
o
]
-
o

1 2 4 8 16 24

remote task denand
(hours)

~
o
c
o
o
o}
0
N
&)
£
=
c
o
=
)
o
0}
X
&)

15

machine number

O optimal

W random (5 machines)
Orandom (10 machines)
Orandom (15 machines)
B 20 machines

@ heuristic

Data Access Optimization

« Data access Is the bottleneck of high
performance computing

Relative Speeds of CPU verse DRAM

10000 -

Much worse for 1/0O 1000 1

bottleneck

(millions of wasted 100 CPU speed Gap increading by 50%
per year

CI?U CyCIeS i (hundredsjof wasted

m|55) CPU cycleq per miss —

10 - soon thqusands)

DRAM spee

> P KPS g PSS
X. Sun. Feb. 2004 N '\9 '\9 '\9 '\9 '\9 '\9 '\9 '\9 '\9 ’19 "LQ "LQ

 Memory access pattern significant impact on comm.
» |Impact differently on different machines

e The memory LogP model

e Optimization methods

» Application on MPI applications

Pl send P2

time
Contigugu LB contigupus
Factor of
stride = 16 bytes 3l
.991 us
Non-Contiguous Non-Contiguous
Memory communication cost can be significant for real
X. Sun. applications.

The memory logP model

Memory hierarchy

I: the additional latency in transfer non-contiguous data of
data size (s) and distribution (d) for a given implementation
of data transfer on a given system, I=f(s,d)

o: the data transfer overhead, defined as the length of
time to transfer contiguous data of data size (s) and
distribution (d) for a given implementation of data transfer
on a given system, |=f(s,d)

For ideal case, o remains constant with size.

A
(Interconnect Cloud)
951 v

processor bandwidth for a given implementation of data
transfer on a given system.

_ g: the gap, defined as the minimum time interval between
consecutive message receptions at a processor. The
| reciprocal of g corresponds to the available per-
|

P: the number of processor/memory modules

T Assume g = 0, common simplification of%&l

X. Sun,
Memory hierarchy

Matrix Transpose on a SGI 02000
using MPI middleware for communication

P P P P P P
[N J [N J
C C C C C C
Memory
s
—
Shared Memory Buffer oo Shared Memory Buffer

2a

Application Buffer ’Application Buffer
Memory /

Network Buffer Network Buffer
>

Network

Comm. critical paths: Non-Cont. data need
go through the application buffer first

X. Sun, Feb. 2004

(D]
(@b]
C
(«b]
 —
(B
—
(D]
-
| —
(«b]
o
(7p)
@
(@]
>
(&b]

data size (bytes)

O contiguousoverhead @ data-packingoverhead

O middleware-inducedoverhead B network-communicationoverhead

X. Sun, Feb.

MPI communication function

Is datatype
predefined?

Retrieve data access pattern

Can performance be
improved?

ves I

Calculate optimization
Use original MPI parameters

function l

Select suitable packing
function

I

Pack data into contiguous
buffer

]

7
\

Network buffer

Architectural

information
(cache and
TLB info)

: emplate
Packing
> functions

(0]
(&)
c
(8]
L
O
Y
(]
e
| —
(0]
o
0
(]
(&)
>
o

Optimized MPICH performance

il

128K

512K 2M 8M 32M 128M
datasize (bytes)

@ original MPICH @ manual packing [Joptimized MPICH

512M

Communication bandwidth

—~
n
~
28]
=
~
=
b
_'9
=
©
c
@®©
o]

128K 512K 2M 8M 32M 128M 512M
data size (bytes)

@original MPICH @ manual packing [Joptimized MPICH

The Cosmology Application

 Worked on a cosmology application called ENZO

— SAMR (Structured Adaptive Mesh Refinement)
application in astrophysics and cosmology

— Developed by G. Bryan and M. Norman
e Three major tasks:

— Conducted a detailed performance analysis

— Developed a novel dynamic load balancing (DLB)
scheme for ENZO on parallel systems

— Extended the code to the Computational Grid

X. Sun, Feb. 2004

Task 1: Performance Analysis

e Qverall characteristics
— Manual instrumentation with FPMPI tool

* 1/O performance
— Use Pablo toolkit

« Adaptive characteristics
— Coarse granularity
— High magnitude of imbalance
— Different patterns of imbalance
— High frequency of refinements

X. Sun, Feb. 2004

e Design a DLB scheme for SAMR applications
considering their adaptive characteristics

 Moving-grid phase

— Directly move excess grids from overloaded proc. to
underloaded proc.

— Minimize grid movements by global information

— Address the high frequency and different patterns
o Splitting-grid phase

— Split the largest grid on the overloaded proc.

— Address the coarse granularity

X. Sun, Feb. 2004

0
©
c
o
O
)
n
£
O
S
=

Total Execution Time

15.36%
33.81%
29.16%

34.45%

16 32 48

number of processors

O AMRG64 (original

DLI?%
B AMRG64 (parallel

DLE)
0O AMR128 (original

DLEQ
B AMR128 (parallel

DLB?<
0O ShockPool3D

original DLB)
m ghockPooBD

(parallel DLB)

Imbalance Ratio

---®--- AMR64
(original DLB)
—e— AMRG4
(parallel DLB)
---A--- AMR128
(original DLB)
—A— AMR128
(parallel DLB)
- - -m- - - ShockPool3D
(original DLB)
—&— ShockPool3D
(parallel DLB)

o
B
S
)
o
C
©
©
o
E

number of processors

« Extend the improved version to the Grid
— Alliance’s Grid

* One major issue: a new DLB scheme for
distributed environment
— Heterogeneity of processors
— Heterogeneity of networks
— Dynamic features of networks
— Adaptive features of applications

X. Sun, Feb. 2004

ANL (16 nodes)

NCSA (8 nodes)

ATM ocC-3

Orign2000
0 MHz

NCSA (8 nodes)

ANL (16 nodes)

rign2000
0 MHz

ANL (8 nodes)

C

SGI Orign2000
250 MHz

Q nQ

SGI Orign3800
500 MHz

time in seconds

Execution Time for AMR64 on DS1

2000

1600 1

1200+

800

400 | _1

0 — T T

4+4 8+8 16+16
number of processors

time in seconds

400+
350+
300+
250+
200+
150+
100+

50+

Execution Time for ShockPool3D on DS2

i

O parallel
DLB

W distributed
DLB

1+1

2+2

4+4

6+6

number of processors

8+8

== The relative improvement ranges from 2.6% to 45.9%

X. Sun, Feb. 2004

time in seconds

500+

400

300+

200+

100+

Execution Time for AMR64 on DS3

1+1 242 4+4
number of processors

time in seconds

600

500+

400+

300+

200+

100+

Execution Time for ShockPool3D on DS3

1+1

2+2 4+4 6+6
number of processors

8+8

O parallel
DLB

W distributed
DLB

@~ The relative improvement ranges from 10.0% to 56.1%

X. Sun, Feb. 2004

Conclusion

 Memory Model and Algorithms: Improve
high performance computing

e Mobility plus Dynamic Scheduling: improve
performance, reliability, availability, QoS,
and trustiness of distributed computing

« Application-level Performance Optimization

* Fermi Applications: Performance analysis
and enhancement, implementation on Grid,
such as the TeraGrid

X. Sun, Feb. 2004

